Model-Driven Deep Learning Based Channel Estimation and Feedback for Millimeter-Wave Massive Hybrid MIMO Systems

نویسندگان

چکیده

This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for wideband millimeter-wave (mmWave) massive hybrid multiple-input multiple-output (MIMO) systems, where the angle-delay domain channels' sparsity is exploited reducing overhead. First, we consider uplink time-division duplexing systems. To reduce pilot overhead estimating high-dimensional channels from limited number of radio frequency (RF) chains at base station (BS), propose to jointly train phase shift network estimator as an auto-encoder. Particularly, by exploiting structured priori model integrated trainable parameters data samples, proposed multiple-measurement-vectors learned approximate message passing (MMV-LAMP) with devised redundant dictionary can recover multiple subcarriers' significantly enhanced performance. Moreover, downlink frequency-division Similarly, pilots BS users be trained encoder decoder, respectively. Besides, further overhead, only received on part subcarriers are fed back BS, which exploit MMV-LAMP reconstruct spatial-frequency matrix. Numerical results show that MDDL-based outperforms state-of-the-art approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

GMD-Based Hybrid Precoding For Millimeter-Wave Massive MIMO Systems

Hybrid precoding can significantly reduce the number of required radio frequency (RF) chains and relieve the huge energy consumption in mmWave massive MIMO systems, thus attracting much interests from academic and industry. However, most existing hybrid precoding schemes are based on singular value decomposition (SVD). Due to the very different subchannel signal-to-noise ratios (SNRs) after SVD...

متن کامل

Codebook Design for Channel Feedback in Lens-Based Millimeter-Wave Massive MIMO Systems

The number of radio frequency (RF) chains can be reduced through beam selection in lens-based millimeter-wave (mmWave) massive MIMO systems, where the equivalent channel between RF chains and multiple users is required at the BS to achieve the multi-user multiplexing gain. However, to the best of our knowledge, there is no dedicated codebook for the equivalent channel feedback in such systems. ...

متن کامل

Multiuser Millimeter Wave MIMO Channel Estimation with Hybrid Beamforming

This paper focuses on multiuser MIMO channel estimation and data transmission at millimeter wave (mmWave) frequencies. The proposed approach relies on the time-divisionduplex (TDD) protocol and is based on two distinct phases. First of all, the Base Station (BS) sends a suitable probing signal so that all the Mobile Stations (MSs), using a subspace tracking algorithm, can estimate the dominant ...

متن کامل

Massive MIMO systems at millimeter-wave Beamforming design and channel estimation Studente

Millimeter-wave (MMW) is a probable technology for the future cellular systems. Its main challenge is achieving sufficient operating link margin, and directional beamforming with large antenna arrays may be a viable approach. With bandwidths on the order of gigahertz, high-resolution analog-to-digital converters are a power consumption bottleneck. One solution is to employ an hybrid implementat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal on Selected Areas in Communications

سال: 2021

ISSN: ['0733-8716', '1558-0008']

DOI: https://doi.org/10.1109/jsac.2021.3087269